Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.409
Filtrar
1.
Mol Pharm ; 21(4): 1933-1941, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502549

RESUMO

Islatravir, a highly potent nucleoside reverse transcriptase translocation inhibitor (NRTTI) for the treatment of HIV, has great potential to be formulated as ethylene-vinyl acetate (EVA) copolymer-based implants via hot melt extrusion. The crystallinity of EVA determines its physical and rheological properties and may impact the drug-eluting implant performance. Herein, we describe the systematic analysis of factors affecting the EVA crystallinity in islatravir implants. Differential scanning calorimetry (DSC) on EVA and solid-state NMR revealed drug loading promoted EVA crystallization, whereas BaSO4 loading had negligible impact on EVA crystallinity. The sterilization through γ-irradiation appeared to significantly impact the EVA crystallinity and surface characteristics of the implants. Furthermore, DSC analysis of thin implant slices prepared with an ultramicrotome indicated that the surface layer of the implant was more crystalline than the core. These findings provide critical insights into factors affecting the crystallinity, mechanical properties, and physicochemical properties of the EVA polymer matrix of extruded islatravir implants.


Assuntos
Desoxiadenosinas , Etilenos , Polivinil , Compostos de Vinila , Polivinil/química
2.
Biomacromolecules ; 25(4): 2621-2634, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457653

RESUMO

Postpolymerization modification of highly defined "scaffold" polymers is a promising approach for overcoming the existing limitations of controlled radical polymerization such as batch-to-batch inconsistencies, accessibility to different monomers, and compatibility with harsh synthesis conditions. Using multiple physicochemical characterization techniques, we demonstrate that poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) scaffolds can be efficiently modified with a coumarin derivative, doxorubicin, and camptothecin small molecule drugs. Subsequently, we show that coumarin-modified PVDMA has a high cellular biocompatibility and that coumarin derivatives are liberated from the polymer in the intracellular environment for cytosolic accumulation. In addition, we report the pharmacokinetics, biodistribution, and antitumor efficacy of a PVDMA-based polymer for the first time, demonstrating unique accumulation patterns based on the administration route (i.e., intravenous vs oral), efficient tumor uptake, and tumor growth inhibition in 4T1 orthotopic triple negative breast cancer (TNBC) xenografts. This work establishes the utility of PVDMA as a versatile chemical platform for producing polymer-drug conjugates with a tunable, stimuli-responsive delivery.


Assuntos
Lactonas , Neoplasias , Polímeros , Humanos , Distribuição Tecidual , Polímeros/química , Polivinil/química , Cloreto de Polivinila , Doxorrubicina/farmacologia
3.
Macromol Rapid Commun ; 45(8): e2300674, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38234077

RESUMO

Defined, branched polymer architectures with low dispersity and architectural purity are of great interest to polymer science but are challenging to synthesize. Besides star and comb, especially the pom-pom topology is of interest as it is the simplest topology with exactly two branching points. Most synthetic approaches to a pom-pom topology reported a lack of full control and variability over one of the three topological parameters, the backbone or arm molecular weight and arm number. A new, elegant, fast, and scalable synthetic route without the need for post-polymerization modification (PPM) or purification steps during the synthesis to a pom-pom and a broad variety of topologies made from styrene and dienes is reported, with potential application to barbwire, bottlebrush, miktoarm star, Janus type polymers, or multi-graft copolymers. The key is to inset short poly(2-vinyl-pyridine) blocks (<2 mol% in the branched product) into the backbone as branching points. Carb anions can react at the C6 carbon of the pyridine ring, grafting the arms onto the backbone. Since the synthetic route to polystyrene pom-poms has only two steps and is free of PPM or purification, large amounts of up to 300 g of defined pom-pom structures can be synthesized in one batch.


Assuntos
Ânions , Polimerização , Poliestirenos , Poliestirenos/química , Ânions/química , Estrutura Molecular , Polímeros/química , Polímeros/síntese química , Polivinil/química , Polivinil/síntese química
4.
Eur J Pharm Sci ; 192: 106655, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016626

RESUMO

Hot-melt extrusion is often used to prepare amorphous solid dispersion to overcome low drug solubility and enhance bio-performance of the formulation. Due to the uniqueness of each drug - polymer combination and its physico-chemical properties, setting the appropriate HME barrel temperature, feed rate and screw speed ensures drug amorphization, absence of residual crystallinity, absence of water, and a suitable drug release profile. In this research, samples with BCS II/IV model drug and PVP/VA polymer were prepared to evaluate the impact of HME process parameters, incoming drug form (anhydrous vs. hydrate), and drug supplier (i.e., impurity profile), on biorelevant drug release. This study provides a relationship between observed in vitro supersaturation and precipitation behavior of amorphous solid dispersion formulation with in vivo results, on patients, by using the acceptor profile of side-by-side dissolution-permeation apparatus. An in vitro dissolution method, in small volumes, in an apparatus with paddles and dissolution-permeation side-by-side method was developed on the MicroFlux™ apparatus to assess if the differences observed in vitro bears relevance to the bioequivalence outcome in vivo. The former was used to guide the generic drug product development due to high discriminatory strength, while the latter was biorelevant, due to the inclusion of the second compartment assuring absorptive environment to capture the impact of supersaturation and subsequent precipitation on bioavailability. Bio-relevancy of the in vitro method was confirmed with the in vivo dog study and clinical study on patients, and an in vitro - in vivo correlation was established. For the investigated BCS II/IV drug, this research highlights the importance of considering supersaturation and formation of colloidal species during amorphous solid dispersion release testing to assure product quality, safety and efficacy.


Assuntos
Contaminação de Medicamentos , Temperatura Alta , Humanos , Animais , Cães , Polímeros/química , Polivinil/química , Solubilidade , Liberação Controlada de Fármacos , Composição de Medicamentos/métodos
5.
ACS Appl Mater Interfaces ; 15(46): 53251-53263, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37948308

RESUMO

The recent focus on P(VDF-TrFE) material in biomedical engineering stems from its outstanding mechanical properties and biocompatibility. However, its application in sono-piezo dynamic therapy (SPDT) has been relatively unexplored. In this study, we developed composite piezoelectric nanoparticles (rPGd NPs@RGD) based on recrystallized P(VDF-TrFE) particles, which offer dual capabilities of MRI imaging and targeted treatment for brain gliomas. SEM observations of P(VDF-TrFE) particles in the disordered convolution region (DCR) revealed recrystallization, representing the polymer chain structure and particle polarity. In comparison to nonrecrystallized nanoparticles, rPGd NPs@RGD exhibited remarkable stability and biocompatibility. Under ultrasound excitation, they generated significantly higher levels of reactive oxygen species, effectively inhibiting tumor cell proliferation, invasion, and migration. rPGd NPs@RGD demonstrated excellent MRI imaging capabilities and antitumor activity in U87 tumor-bearing mice. This study highlights the remarkable SPDT abilities of the developed nanoparticles, attributed to the microscopic morphological changes in the DCR that increase the nanoparticle's polarity and thus boost its potential for SPDT. This research opens new possibilities for utilizing P(VDF-TrFE) materials in advanced biomedical applications.


Assuntos
Nanopartículas , Polivinil , Camundongos , Animais , Polivinil/química , Ultrassonografia , Oligopeptídeos
6.
Environ Sci Pollut Res Int ; 30(60): 126009-126028, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38008843

RESUMO

Supporting titanium oxide (TiO2) on polymeric membrane surfaces is a strategy to increase the photocatalytic activity of this material as well as to modify membrane surface with antifouling properties or to develop hybrid processes of water treatment. The chemical characteristics of the polymeric membrane surfaces are a determining factor in the correct impregnation of TiO2 particles. In this work, the titanium oxide was immobilized on polyvinylidene fluoride (PVDF) membrane surface by direct impregnation during the synthesis of the inorganic particles by sol-gel route. The PVDF membranes were previously modified by treatments based on an alkaline attack followed by acid treatment. The final TiO2-modified membranes were characterized by infrared and Raman spectroscopy, as well as by scanning electron microscopy. In addition, the changes on the surface characteristics were determined by contact angle measurements. Finally, the membranes were tested on the photocatalytic degradation of methyl orange (MO). The results obtained indicate that the basic/acid pretreatment allows the generation of active sites in the membrane and that when carrying out the synthesis of TiO2 on the membrane, it can be anchored stably on its surface and through the pores. The microscopies indicate that the structure of the membrane is not compromised by the pretreatment. The amount of TiO2 deposited on the membrane was of 0.1580 ± 0.01773 mg TiO2/cm2 membrane. With this amount of TiO2, a degradation percentage of 98.2% is achieved after 450 min; when the membrane is used for a second cycle, a degradation percentage of 82.0% is obtained, which remains constant for 3 subsequent cycles. This method, which uses the PVDF membrane as a support for TiO2 particles, represents a low-cost and easy-to-prepare insertion procedure, with good degradation percentages, which means that the membrane can be used for subsequent studies in filtration systems in the treatment of effluents from the textile industry.


Assuntos
Polivinil , Titânio , Polivinil/química , Titânio/química , Polímeros
7.
Environ Sci Pollut Res Int ; 30(41): 94195-94204, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37526830

RESUMO

The drinking water has become contaminated with lead in many countries across the world. In this study, a novel lead-imprinted polyvinylidene fluoride (PVDF) membrane was successfully fabricated for selective decontamination of lead from water. First of all, the membrane fabrication process was explored and optimized. The physical and chemical properties were then studied for a better understanding of the features of the membrane. The performance of lead removal by the adsorptive membrane was evaluated by systematic batch adsorption experiments, including pH effect, kinetics, isotherm, selectivity, and regeneration studies. The results indicated that the adsorptive membrane showed a high adsorption capacity of 40.59 mg Pb/g at the optimal pH of 5.5, fast kinetics of 2 h, high selectivity towards lead, and outstanding regeneration performance. The Langmuir equation fitted the isotherm better than the Freundlich equation, while the pseudo-second-order model and pore diffusion model well described the kinetics. The adsorptive membrane showed high selectivity towards lead in the lead/zinc binary solution. In the continuous filtration study, a small piece of adsorptive membrane could treat 3.75 L of lead solution. The XPS studies revealed that the lead uptake was mainly due to the complex reaction between lead and carboxyl and hydroxyl in the membrane.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Chumbo , Polivinil/química , Filtração/métodos , Cinética , Adsorção , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
8.
Macromol Rapid Commun ; 44(20): e2300177, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37461210

RESUMO

This study investigates the effect of the macromolecular architecture of poly(vinylidene fluoride) (PVDF) on its thermally induced phase separation (TIPS) behavior and polymorphic crystallization in the PVDF/γ-butyrolactone (PVDF/γ-BL) system. Preparative PVDF fractions with specific macromolecular architecture and phase constitution are generated. The results show that PVDF's macromolecular architecture, particularly the degree of branching and regio-defects, plays a significant role in its temperature-dependent crystallization and resulting polymorphic phases. While regio-defects dominate crystallization in the temperature range between 30 and 25 °C, the degree of branching becomes decisive in the 25-20 °C interval. The developed fractions of PVDF are further analyzed in terms of their molecular weight distribution, revealing that the PVDF fractions crystallized out of solution have similar molecular weight distributions with lower dispersity compared with the feed polymer. These findings are crucial for macromolecular separation and adjustment of PVDF polymorphic properties and hence for the development of tailor-made PVDF matrix materials for composites and membranes. The findings suggest the possibility of polymorphous phase tailoring of PVDF based on macromolecular architecture due to temperature-controlled crystallization out of solution and strongly motivate further research to reveal deeper knowledge of regio-defect and branching influence of PVDF solution crystallization.


Assuntos
4-Butirolactona , Polivinil , Cristalização/métodos , Polivinil/química , Substâncias Macromoleculares/química
9.
Macromol Rapid Commun ; 44(18): e2300226, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37340957

RESUMO

As a key component in laminated glass, plasticized polyvinyl butyral (PVB) interlayer is a kind of impact-resistant polymer material with high toughness. Recently, by using ultrasmall angle X-ray scattering (USAXS) technique, Stretch-induced phase-separated structure on the scale of hundreds of nanometers formed in plasticized PVB for the first time is reported. In this work, the multiscale relaxation behavior of plasticized PVB is further investigated. The relaxation behavior of deformed plasticized PVB is studied from macroscopic stress, mesoscopic phase-separated structure, and microscopic chain segment by combining USAXS, and birefringence with in situ stretching device. The contributions of chain segments and hydrogen bonding clusters for the multiscale relaxation behavior are discussed.


Assuntos
Cloreto de Polivinila , Polivinil , Polivinil/química , Polímeros/química , Ligação de Hidrogênio
10.
ACS Appl Mater Interfaces ; 15(20): 24109-24119, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37184103

RESUMO

Multifunctional electrospun nanofibers (ENs) with improved properties have increased attention nowadays. Their insoluble forms in water with decreased hydrophobicity are desired for the immobilization of biological molecules. Also, the addition of functional groups on the backbone provides the conjugation of biomolecules onto the surface of ENs via covalent bonds to increase their stability. Here, poly(vinylidene fluoride) (PVDF) was chosen to prepare a platform, which is insoluble in water, and polyethylenimine (PEI) was used to add amine groups on the surface of ENs to bind biological molecules via covalent conjugation. So, PVDF-PEI nanofibers were prepared on a glassy carbon electrode to immobilize an antimethamphetamine antibody (Anti-METH) as a model biomolecule. The obtained PVDF-PEI/Anti-METH was used for the bioelectrochemical detection of methamphetamine (METH), a common illicit drug. Bioelectrochemical detection of METH on PVDF-PEI/Anti-METH-coated electrodes was carried out by voltammetry in the range of 2.0-50 ng/mL METH. Moreover, the effect of dansyl chloride (DNC) derivatization of METH on the sensitivity of PVDF-PEI/Anti-METH was tested. Finally, METH analysis was carried out in synthetic body fluids. The obtained results showed that PVDF-PEI ENs can be adopted as an immobilization matrix for the biorecognition elements of biobased detection systems, and the derivative of METH (METH-DNC) increased the sensitivity of PVDF-PEI/Anti-METH.


Assuntos
Imunoconjugados , Metanfetamina , Nanofibras , Nanofibras/química , Polivinil/química , Anticorpos
11.
Biomaterials ; 297: 122100, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37004426

RESUMO

Hybrid polymer-ceramic composites have been widely investigated for bone tissue engineering applications. The incorporation of a large amount of inorganic phase, like barium titanate (BaTiO3) with good dispersion, in a polymeric matrix using a conventional processing approach has always been challenging. Also, the comprehensive study encompassing the interactions of key components of living organisms (cell, blood, tissue) with such hybrid composites is not well explored in many published studies. Built on our earlier studies and recognizing the importance of poly(vinylidene fluoride) (PVDF) as a widely used polymer for a wide spectrum of biomedical applications, the present study reports the qualitative and quantitative analysis of the biocompatibility of PVDF composite (PVDF/30BT/3MWCNT) reinforced with large amounts of BaTiO3 (30 wt %) and tailored addition of multiwalled carbon nanotubes (MWCNT; 3 wt %). The melt mixing-extrusion-compression moulding-based processing approach resulted in an enhancement of ß-phase content, thermal stability, and wettability in the semi-crystalline PVDF composite. The enhanced hemocompatibility of PVDF/30BT/3MWCNT has been established conclusively by a series of in vitro blood-material interaction assays, including haemolysi, analysis of platelets attachment and activation, dynamic blood coagulation, and plasma recalcification time. The cytocompatibility study confirms an improved adhesion, proliferation, and migration of osteoprogenitor cells (preosteoblasts; MC3T3-E1) on PVDF/30BT/3MWCNT, in a manner better than neat PVDF, in vitro. When these cells were cultured in osteogenic differentiating media, the modulated osteogenesis, in terms of alkaline phosphatase activity, intracellular Ca2+ concentration, and calcium deposition on the PVDF/30BT/3MWCNT, was recorded. Following subcutaneous implantation of PVDF/30BT/3MWCNT in rat model, no apparent variation was recorded in the complete hemogram (blood hematology analysis) or serum biochemistry, post 30-, 60-, and 90-days surgery. Importantly, 90-days post-implantation, the fibrous capsule thickness was significantly reduced in the composites w.r.t PVDF alone, together with better blood vessel formation, indicating improved neovascularization around the composite. This study establishes the efficacy of inorganic fillers in enhancing the biocompatibility of PVDF, which could open up a wide range of biomedical applications.


Assuntos
Nanotubos de Carbono , Osteogênese , Ratos , Animais , Osteogênese/fisiologia , Polivinil/química , Cerâmica/química , Excipientes
12.
Macromol Rapid Commun ; 44(9): e2300038, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36880406

RESUMO

In order to use the infrared (IR) radiation shielding materials, they should take a form of thin film coatings deposited on glass/polymer substrates or be used as fillers of glass/polymer. The first approach usually suffers from several technological problems. Therefore, the second strategy gains more and more attention. Taking into account this trend, this work presents the usage of iron nanoparticles (Fe NPs) embedded into the poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) films as the shielding material in near-infrared (NIR) and mid-infrared (MIR) region. The performed investigations show that the transmittance of copolymer films decreases with increasing content of the Fe NPs inside them. It is found that the average fade of IR transmittance for 1, 2.5, 5, 10, and 50 mg of Fe NPs is about 13%, 24%, 31%, 77%, and 98%, respectively. Moreover, it is observed that the PVDF-HFP films filled in the Fe NPs almost does not reflect the NIR and MIR radiation. Hence, the IR shielding properties of the PVDF-HFP films can be effectively tuned by the addition of proper amount of the Fe NPs. This, in turn, shows that the PVDF-HFP films filled in the Fe NPs constitute a great option for IR antireflective and shielding applications.


Assuntos
Ferro , Nanopartículas , Polivinil/química , Polímeros , Nanopartículas/química
13.
Environ Sci Pollut Res Int ; 30(11): 29164-29179, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36409410

RESUMO

Characterisation of the fouling attached to PVDF membranes treating an anaerobic effluent for dissolved CH4 recovery was carried out. A commercial flat-sheet PVDF membrane and a PVDF functionalised by grafting of organofluorosilanes (mPVDF) that increased its hydrophobicity were subjected to a continuous flux of an anaerobic reactor effluent in long-term operation tests (> 800 h). The fouling cakes were studied by the membrane autopsy after these tests, combining a staining technique, FTIR, and FESEM-EDX, and the fouling extraction with water and NaOH solutions. Both organic and inorganic fouling were observed, and the main foulants were proteins, polysaccharides, and different calcium and phosphate salts. Also, a significant amount of live cells was detected on the fouling cake (especially on the non-modified PVDF). Although the fouling cake composition was quite heterogeneous, a stratification was observed, with the inorganic fouling mainly in the bulk centre of the cake and the organic fouling mainly located in the lower and upper surfaces of the cake. The mPVDF suffered a more severe fouling, likely owing to a stronger hydrophobic-hydrophobic interaction with the foulants. Irreversible fouling remained on both membranes after the extraction, although a higher irreversible fouling was detected in the mPVDF; however, a complete polysaccharide removal was observed. Regarding the operation performance, PVDF showed a lower stability and suffered a severe degradation, resulting in a lower thickness and perforations. Finally, the decrease in the methane recovery performance of both membranes was associated with the fouling depositions.


Assuntos
Metano , Purificação da Água , Anaerobiose , Polivinil/química , Membranas Artificiais , Purificação da Água/métodos
14.
Chemistry ; 29(15): e202203166, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36478479

RESUMO

There is an endogenous electric field in living organisms, which plays a vital role in the development and regeneration of bone tissue. Therefore, self-powered piezoelectric material for bone repair has become hot research in recent years. However, the current piezoelectric materials for tissue regeneration still have the shortcomings of lack of biological activity and three-dimensional structure. Here, we proposed a three-dimensional polyurethane foam (PUF) scaffold coated with piezoelectric poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and modified by a calcium phosphate (CaP) mineralized coating. The preferred scaffold has an open circuit voltage and short circuit current output of 5 V and 200 nA. Combining the physical and chemical properties of the CaP coating, the piezoelectric signal of PVDF-HFP and the three-dimensional structure of PUF, the scaffold exhibits superior promotion of cell osteogenic differentiation and ectopic bone formation in vivo. The mechanism is attributed to an increase in intracellular Ca2+ levels in response to chemical and piezoelectric stimulation with the material. This research not only paves the way for the application of piezoelectric scaffolds to stimulate osteoblasts differentiation in situ, but also lays the foundation for the clinical treatment of long-term osteoporosis.


Assuntos
Osteogênese , Tecidos Suporte , Polivinil/química , Diferenciação Celular
15.
ACS Appl Mater Interfaces ; 15(1): 1736-1747, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36571179

RESUMO

Piezoelectric sensors are widely used in wearable devices to mimic the functions of human skin. However, it is considerably challenging to develop soft piezoelectric materials that can exhibit high sensitivity, stretchability, super elasticity, and suitable modulus. In this study, a soft skin-like piezoelectric polymer elastomer composed of poly(vinylidene fluoride) (PVDF) and a novel elastic substrate polyacrylonitrile is prepared by combining the radical polymerization and freeze-drying processes. Dipole-dipole interaction results in the phase transition of PVDF (α phase to ß phase), which enhances the electrical and mechanical performances. Thus, we achieve a high piezoelectric coefficient (d33max = 63 pC/N), good stretchability (211.3-259.3%), super compressibility (subjected to 99% compression strain without cracking), and super elasticity (100% recovery after extreme compression) simultaneously for the elastomer. The soft composite elastomer produces excellent electrical signal output (Vocmax = 253 mV) and responds rapidly (15 ms) to stress-induced polarization effects. In addition, the elastomer-based sensor accurately detects various physiological signals such as gestures, throat vibrations, and pulse waves. The developed elastomers exhibit excellent mechanical properties and high sensitivity, which helps facilitate their application as artificial electronic skin to sense subtle external pressure in real time.


Assuntos
Elastômeros , Dispositivos Eletrônicos Vestíveis , Humanos , Elastômeros/química , Polímeros , Polivinil/química
16.
Colloids Surf B Biointerfaces ; 221: 112980, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36356402

RESUMO

Surface potential of biomaterials is found to be important for wound healing. Here, poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) films with different surface potentials and piezoelectric responses were prepared and explored for the effect of surface potential on wound healing. The crystalline state of P(VDF-TrFE) films were characterized with X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier-transformed infrared spectroscopy (FTIR), illustrated that the electric polarization will promote the crystallization of the ß phase of P(VDF-TrFE), in which the content of ß phase increased from 82.9 % to 86.8 % compared with the control. Then, Kelvin potential and piezoelectric coefficient d33 were to evaluate surface potential and polarization performance. Moreover, bovine serum albumin (BSA) adsorption and cell culture results showed that high surface potential can promote protein adsorption as well as fibroblast proliferation and macrophage polarization. Finally, in vivo experiments indicated that high voltage polarized P(VDF-TrFE) films can generate higher dynamic potential up to 2.3 V, and promoted wound healing from the phases of inflammation, proliferation and remodeling, the wound healing rate of which was 88.8 % ± 0.8 %, significantly higher than 79.1 % ± 2.5 % and 86.4 % ± 1.8 % of blank and control. In general, this work revealed that polarized P(VDF-TrFE) films can promote wound healing, shed light on designing wound healing materials with similar properties.


Assuntos
Materiais Biocompatíveis , Polivinil , Polivinil/química , Materiais Biocompatíveis/química , Eletricidade , Cicatrização
17.
Artigo em Inglês | MEDLINE | ID: mdl-36497625

RESUMO

g-C3N4/Ag3PO4/TiO2 nanocomposite materials were loaded onto a polyvinylidene fluoride (PVDF) membrane using a phase inversion method to obtain a photocatalytic flat membrane for dye removal. The morphology, structure, and photocatalytic activity of the g-C3N4/Ag3PO4/TiO2 nanoparticles and composite membrane were evaluated. The g-C3N4/Ag3PO4/TiO2/PVDF membrane exhibited superior morphology, hydrophilic properties, and antifouling performance compared with the raw PVDF membrane. Four-stage filtration was performed to evaluate the self-cleaning and antifouling capacity of the g-C3N4/Ag3PO4/TiO2/PVDF membrane. Upon irradiating the composite membrane with visible light for 30 min, its irreversible fouling resistance (Rir) was low (9%), and its flux recovery rate (FRR) was high (71.0%) after five filtration cycles. The removal rate of rhodamine B (RhB) from the composite membrane under visible light irradiation reached 98.1% owing to the high photocatalytic activity of the membrane, which was superior to that of raw PVDF membrane (42.5%). A mechanism of photocatalytic composite membranes for RhB degradation was proposed. Therefore, this study is expected to broaden prospects in the field of membrane filtration technology.


Assuntos
Polivinil , Catálise , Polivinil/química , Rodaminas
18.
Environ Sci Technol ; 56(22): 16271-16280, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36239692

RESUMO

Electroactive membranes have the potential to address membrane fouling via electrokinetic phenomena. However, additional energy consumption and complex material design represent chief barriers to achieving sustainable and economically viable antifouling performance. Herein, we present a novel strategy for fabricating a piezoelectric antifouling polyvinylidene fluoride (PVDF) membrane (Pi-UFM) by integrating the ion-dipole interactions (NaCl coagulation bath) and mild poling (in situ electric field) into a one-step phase separation process. This Pi-UFM with an intact porous structure could be self-powered in a typical ultrafiltration (UF) process via the responsivity to pressure stimuli, where the dominant ß-PVDF phase and the out-of-plane aligned dipoles were demonstrated to be critical to obtain piezoelectricity. By challenging with different feed solutions, the Pi-UFM achieved enhanced antifouling capacity for organic foulants even with high ionic strength, suggesting that electrostatic repulsion and hydration repulsion were behind the antifouling mechanism. Furthermore, the TMP-dependent output performance of the Pi-UFM in both air and water confirmed its ability for converting ambient mechanical energy to in situ surface potential (ζ), demonstrating that this antifouling performance was a result of the membrane electromechanical transducer actions. Therefore, this study provides useful insight and strategy to enable piezoelectric materials for membrane filtration applications with energy efficiency and extend functionalities.


Assuntos
Incrustação Biológica , Ultrafiltração , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Polivinil/química
19.
Niger J Clin Pract ; 25(9): 1484-1489, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36149208

RESUMO

Background to Aim: To compare the effects of disinfectants on surface roughness of the conventional impression materials following chemical disinfection procedures. Materials and Methods: Equal numbers (65 for each impression material) of disc-shaped (15 × 3 mm) samples (Total n = 195) were fabricated from polyvinyl siloxane (Zhermack Elite), polyether (3M Impregum Penta Soft), and vinyl siloxane ether (Kettenbach Identium Lightbody) impression materials. Each impression material group was divided into five subgroups including one control group (n = 13). Impression material samples were immersed in CaviCide for 3 min, Zeta 7 solution for 10 min, and 5.25% sodium hypochlorite solution for 3 and 10 min. Surface roughness (Ra) was measured using a profilometer (Mitutoyo-SJ 410, Mitutoyo Corp.). The study data were analyzed statistically. Results: A statistically significant difference was found among impression materials and disinfectants in terms of surface roughness (P < 0.05). Polyvinyl siloxane material showed a lower Ra value compared to Polyether and VSE materials; while polyether material showed a significantly lower Ra value compared to VSE material. Ra values of the control group were significantly lower than the disinfectant group immersed in 5.25% NaOCl solution for 10 min. Conclusion: Among all impression materials, polyvinyl siloxane showed the least surface roughness following disinfection procedures. Impression disinfectants that are specially designed for disinfecting dental impressions resulted in less surface roughness in all impression materials. With this study, it was aimed to obtain a smooth and clear model for the production of correct and compatible prostheses in the laboratory while at the same time purifying the impressions from microorganisms.


Assuntos
Desinfetantes , Materiais para Moldagem Odontológica , Desinfecção/métodos , Éteres/química , Humanos , Teste de Materiais , Polivinil/química , Siloxanas/química , Hipoclorito de Sódio/química , Propriedades de Superfície
20.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142274

RESUMO

In this contribution, we study the effect of trifluoro ethylene (TrFE) comonomer content (samples with 80/20, 75/25, and 70/30 VDF/TrFE molar ratios were used) on the crystallization in P(VDF-co-TrFE) in comparison with a PVDF (Poly(vinylidene fluoride)) homopolymer. Employing Polarized Light Optical Microscopy (PLOM), the growth rates of spherulites or axialites were determined. Differential Scanning Calorimetry (DSC) was used to determine overall crystallization rates, self-nucleation, and Successive Self-nucleation and Annealing (SSA) thermal fractionation. The ferroelectric character of the samples was explored by polarization measurements. The results indicate that TrFE inclusion can limit the overall crystallization of the copolymer samples, especially for the ones with 20 and 25% TrFE. Self-nucleation measurements in PVDF indicate that the homopolymer can be self-nucleated, exhibiting the classic three Domains. However, the increased nucleation capacity in the copolymers provokes the absence of the self-nucleation Domain II. The PVDF displays a monomodal distribution of thermal fractions after SSA, but the P(VDF-co-TrFE) copolymers do not experience thermal fractionation, apparently due to TrFE incorporation in the PVDF crystals. Finally, the maximum and remnant polarization increases with increasing TrFE content up to a maximum of 25% TrFE content, after which it starts to decrease due to the lower dipole moment of the TrFE defect inclusion within the PVDF crystals.


Assuntos
Etilenos , Polivinil , Cristalização , Polímeros de Fluorcarboneto , Polivinil/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...